blog-top-background

The Exilva Blog

The leading blog on nanocellulose

Coatings, adhesives/sealants

Boost your corrugator productivity with Exilva Microfibrillated cellulose

7. July 2020

Having demonstrated the viscosity stabilizing effect of Exilva in starch adhesives, for this third blog post in the corrugated boards application series, I will focus on the effect on glue ability and production speed.

Read more
2. October 2018

High performance and durability with greener tire tread

There is a growing interest to increase the portion of bio-based components in various consumables. We have previously discussed about the challenges to incorporate microfibrillated cellulose (MFC) into composite materials with hydrophobic matrixes, such as PLA. Today we will take a step even further and see how cellulose fibrils can support the development of more environmentally friendly tires with high performance and durability.

Read more
7. August 2018

How can I make my batteries safer?

You may have read about the issues related to lithium-ion batteries lately. Situations where the batteries have swelled or even caused a fire or an explosion. The question is, could cellulose fibrils be used to prevent these issues? Or would there be other functions in the batteries where the fibrils would be useful or even open new opportunities?

Read more
10. July 2018

The technology of shotcrete. Can we eliminate rebound problems?

Shotcrete is concrete or mortar pneumatically projected at high velocity through a nozzle. Its components are aggregates, cement and water, and it can be complemented by fine materials, chemical additives and reinforcing fibers. Shotcrete can be applied with mechanized equipment or manually, using wet-mix or dry-mix spraying. The choice of the spraying method depends on the dimensions of the project, the quantity of concrete to be applied, as well as the logistical and environmental circumstances. Some important properties of shotcrete are the appropriate consistency and early strength development in its fresh state as well as compressive strength and durability in its hardened state. Let´s discuss some basic properties and functionalities.

Read more
3. July 2018

Biodegradable packaging with cellulose fibrils

Cellulose-based materials, like paper and board, are commonly used in packaging. They are light-weight, durable, bio-based and easily recyclable which have made them a popular packaging material. However, paper and board lack the necessary barrier properties for food packaging and therefore an additional barrier layer is often added on the paper. Today, this layer is made from polymers, like polyethylene terephthalate or polyethylene, or aluminum. There are efforts to replace these materials with bio-based, biodegradable films in order to reduce the dependency on crude oil as well as reduce the impact on the environment.

Read more
5. June 2018

Looking for a rheology additive for a waterborne system? Take a look at Exilva microfibrillated cellulose

Are you looking for a new additive for controlling rheology? In this article if will give you an explanation of the typical and well known rheology additive, and the Exilva Microfibrillated cellulose. 

Read more
15. May 2018

How to improve art conservation by utilizing the technology advantage

OK, so this case fascinated me a great deal. I have previously learned a lot on film forming properties, oxygen barrier properties and other related topics to this in the past. But recently I learned that the properties from microfibrillated cellulose and cellulose fibrils is starting to show potential in art preservation or conservation. But how does this take place, and what’s the main functionalities behind all this? I spent some time researching the subject, and today I am sharing my findings with you. Some key words: stability, transparency and mechanical strength. Dig in to learn more!

Read more
8. May 2018

Cellulose fibrils for printed electronics

Printed electronics suit well for the current mega trends, like internet of things and growing interest in monitoring your own health. The products produced by printed electronics vary from displays and sensors to energy storage and flexible conductors. For example, small sensors can be printed on food packaging to follow the quality of food as well as warn the consumer when the product is out of date. For such reasons, the interest for developing materials for printed electronics is growing. How can cellulose fibrils and other cellulose based materials be used in such applications?

Read more
1. May 2018

Nanopaper preparation with KTH

Making nanopaper is an good test on the characteristics of cellulose fibrils, and especially strength and durability. In this weeks blog from the Exilva blog, our H2020 partners at KTH are showing you how to make the nanopaper in a "step-by-step" practical example. The making of nanopaper quickly illustrates the strength performance you can get from this material once it forms paper or film. Spend a couple of minutes, and you will quickly understand why this material can take a leading part in the dual focus of increased sustainability and performance. 

Read more
24. April 2018

Stability of Cellulose fibrils — microbial degradation

Cellulose fibrils are most often supplied as readily activated water suspensions. This maintains the product’s performance and makes it easy to incorporate into a formulation. It however brings up questions about the microbial stability of the suspension over time. Is the robustness of Cellulose fibrils enough in this case?

Read more
3. April 2018

Research review March 2018: new topics from the world of cellulose fibrils

Continuously following the world of cellulose fibrils and the development is both dynamic and interesting. A lot of new inventions are taking place, based on the cellulose fibrils. We have given 3D printing a quite high focus in the last couple of reviews, but this week there are two other news items on the list: composites made from cellulose fibrils. Dig into this week’s research review to find out more on what might possibly be the next generation of composite materials.

Read more
1 2 3 4 5

Never miss out

Sign up to our blog for all the latest